List of Important Derivative Rules

Let c be a constant number, and let $f(x)$ and $g(x)$ be differentiable functions.
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad$ Definition of the derivative
$f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \quad$ Definition of the derivative at the point $x=c$
$y=f(c)+f^{\prime}(c)(x-c) \quad$ Equation of the tangent line to $f(x)$ at $x=c$
$[c]^{\prime}=0$
$\left[x^{c}\right]^{\prime}=c x^{c-1}$
$[c f(x)]^{\prime}=c f^{\prime}(x)$
$[f(x)+g(x)]^{\prime}=f^{\prime}(x)+g^{\prime}(x) \quad$ Sum Rule
$[f(x)-g(x)]^{\prime}=f^{\prime}(x)-g^{\prime}(x) \quad$ Difference Rule
$[f(x) g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \quad$ Product Rule
$\left[\frac{f(x)}{g(x)}\right]^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \quad$ Quotient Rule
$[g(f(x))]^{\prime}=g^{\prime}(f(x)) \cdot f^{\prime}(x) \quad$ Chain Rule
$f^{\prime \prime}(x)=\left[f^{\prime}(x)\right]^{\prime} \quad$ Definition of second derivative
$\left[e^{g(x)}\right]^{\prime}=g^{\prime}(x) \cdot e^{g(x)} \quad$ Derivative of an exponential function
$[\ln (g(x))]^{\prime}=\frac{g^{\prime}(x)}{g(x)} \quad$ Derivative of the natural logarithm

